Mobile Target Tracking of Swarm Robotics in Unknown Obstructive Environment

نویسندگان

  • Zhongyang Zheng
  • Ying Tan
چکیده

This paper considers the problem of tracking a mobile target in an obstructive environment using a swarm of simple robots with limited sensing and communicating abilities. The target-tracking procedure, which has not been paid attention in previous swarm robotic researches, is specially focused. In tracking phase of problem, the swarm should move with low energy cost while keeping the target in sight. This mobile target tracking (MTT) problem, is useful for practical applications, such as escorting, monitoring, group carrying and etc. A spring virtual force (SVF) model is proposed to solve MTT problem and is applied on a self-built simulation program written by the authors in both ideal and noisy environments. The simulation results demonstrate that the proposed model has great advantages in finding target, saving energy and maintaining connectivity with fewer parameters, smaller computation overload and higher stability. The SVF model can achieve great performance even when there exists significant amount of noise.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Visual Tracking using Learning Histogram of Oriented Gradients by SVM on Mobile Robot

The intelligence of a mobile robot is highly dependent on its vision. The main objective of an intelligent mobile robot is in its ability to the online image processing, object detection, and especially visual tracking which is a complex task in stochastic environments. Tracking algorithms suffer from sequence challenges such as illumination variation, occlusion, and background clutter, so an a...

متن کامل

Navigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network

Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...

متن کامل

A Gravitational Search Algorithm-Based Single-Center of Mass Flocking Control for Tracking Single and Multiple Dynamic Targets for Parabolic Trajectories in Mobile Sensor Networks

Developing optimal flocking control procedure is an essential problem in mobile sensor networks (MSNs). Furthermore, finding the parameters such that the sensors can reach to the target in an appropriate time is an important issue. This paper offers an optimization approach based on metaheuristic methods for flocking control in MSNs to follow a target. We develop a non-differentiable optimizati...

متن کامل

Multi Robot Communication and Target Tracking System and Implementation of Robot Using Arduino

---------------------------------------------------------------------***--------------------------------------------------------------------Abstract SWARM robotics or multi robot systems is a novel approach to the coordination of large numbers of relatively simple robots which takes its inspiration from social insects ants, termites, wasps and bees etc. Robot mapping or trajectory plotting is t...

متن کامل

Adaptive Sliding Mode Tracking Control of Mobile Robot in Dynamic Environment Using Artificial Potential Fields

Solution to the safe and collision-free trajectory of the wheeled mobile robot in cluttered environments containing the static and/or dynamic obstacle has become a very popular and challenging research topic in the last decade. Notwithstanding of the amount of publications dealing with the different aspects of this field, the ongoing efforts to address the more effective and creative methods is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016